Mechanical Properties and Degradation of Chain and Step-Polymerized Photodegradable Hydrogels

نویسندگان

  • Mark W. Tibbitt
  • April M. Kloxin
  • Lisa A. Sawicki
  • Kristi S. Anseth
چکیده

The relationship between polymeric hydrogel microstructure and macroscopic properties is of specific interest to the materials science and polymer science communities for the rational design of materials for targeted applications. Specifically, research has focused on elucidating the role of network formation and connectivity on mechanical integrity and degradation behavior. Here, we compared the mechanical properties of chain and step polymerized, photodegradable hydrogels. Increased ductility, tensile toughness, shear strain to yield were observed in step polymerized hydrogels, as compared to the chain polymerized gels, indicating that increased homogeneity and network cooperativity in the gel backbone improves mechanical integrity. Furthermore, the ability to degrade the hydrogels in a controlled fashion with light was exploited to explore how hydrogel microstructure influences photodegradation and erosion. Here, the decreased network connectivity at the junction points in the step polymerized gels resulted in more rapid erosion. Finally, a relationship between the reverse gelation threshold and erosion rate was developed for the general class of photodegradable hydrogels. In all, these studies further elucidate the relationship between hydrogel formation and microarchitecture with macroscale behavior to facilitate the future design of polymer networks, degradable hydrogels, as well as photoresponsive materials as cell culture templates, drug delivery vehicles, responsive coatings, and anisotropic materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.

Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects ...

متن کامل

Evaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method

Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...

متن کامل

Photodegradable hydrogels for dynamic tuning of physical and chemical properties.

We report a strategy to create photodegradable poly(ethylene glycol)-based hydrogels through rapid polymerization of cytocompatible macromers for remote manipulation of gel properties in situ. Postgelation control of the gel properties was demonstrated to introduce temporal changes, creation of arbitrarily shaped features, and on-demand pendant functionality release. Channels photodegraded with...

متن کامل

Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples...

متن کامل

Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology

Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013